
DO

NOT

COPY

Appendix

The ABCL/1 User's Guide

Etsuya Shibayama

Yuuji Ichisugi

Akinori Yonezawa

This User's Guide has three parts. Sections 1{7 are the ABCL/1 language manual,

in which we describe the syntax and semantics of the language using program exam-

ples. Sections 8{15 are the introduction to the ABCL/1 system, in which we explain

how to interact with the ABCL/1 system through session examples. Sections 16{21

are the miscellaneous part including the command dictionary of the ABCL/1 system

and the formal syntax description of the language ABCL/1.

The current ABCL/1 system/language depends on Common Lisp[?]. For instance,

the ABCL/1 system is implemented in Common Lisp and the ABCL/1 language

includes most Common Lisp functions, macros, and special forms. The reader of this

user's guide is expected to have some basic knowledge of Common Lisp such as its

syntax and basic functions.

Contents

PART I 4

1 The Computation Model : 4

2 Object De�nitions : 6

2.1 Message Patterns : 8

2.2 Reply Destination Variables : : : : : : : : : : : : : : : : : : : 10

2.3 Sender Variables : 11

1

2 The ABCL/1 User's Guide

2.4 Constraints : 11

2.5 Behavior Descriptions : 11

3 Basic Forms : 12

3.1 Assignment Forms : 12

3.2 Object De�nition Forms : 12

3.3 Reply Forms : 13

3.4 Common Lisp Forms : 13

3.5 Bracket Forms : 15

4 Message Passing Forms : 16

4.1 Message Passing in the Ordinary Mode : : : : : : : : : : : : : 16

4.2 Past Type Message Passing Including a Reply Destination : : 18

4.3 Future Objects : 20

4.4 Multicast : 23

4.5 Message Passing in the Express Mode : : : : : : : : : : : : : : 23

4.6 Atomic Forms : 24

4.7 Non-Resume Forms : 26

4.8 Parallel Message Passing Forms : : : : : : : : : : : : : : : : : 26

5 Control Structures : 28

5.1 Common Lisp Control Structures : : : : : : : : : : : : : : : : 28

5.2 Wait-For Forms : 29

5.3 Wait-For-Loop Forms : 30

5.4 Match Forms : 32

5.5 Match-Loop Forms : 33

5.6 Routine Calls : 33

5.7 De�ning Macros : 35

6 Miscellaneous Forms : 38

6.1 Suicide : 38

6.2 Break Points : 38

7 Variables and Their Scope Rule : 39

7.1 Variables in the Global Environment : : : : : : : : : : : : : : 39

7.2 State Variables : 40

7.3 Temporary Variables : 41

7.4 Pattern Variables : 42

7.5 Environment Variables : 42

7.6 Pseudo Variables : 43

Contents 3

PART II 44

8 The ABCL/1 System : 44

8.1 Invocation of the ABCL/1 System : : : : : : : : : : : : : : : : 44

8.2 Halting the ABCL/1 System : : : : : : : : : : : : : : : : : : : 45

9 The Top Level : 45

9.1 The Help Command : 45

9.2 Object De�nition at the Top Level : : : : : : : : : : : : : : : 45

9.3 Evaluation of Forms at the Top Level : : : : : : : : : : : : : : 46

10 The Loader and Compiler : 47

10.1 Loading an ABCL/1 Program : : : : : : : : : : : : : : : : : : 47

10.2 Compiling an ABCL/1 Program : : : : : : : : : : : : : : : : : 48

11 Getting Information about Objects : : : : : : : : : : : : : : : : : : : 49

11.1 Listing the Objects De�ned at the Top Level : : : : : : : : : : 49

11.2 Describing Objects : 49

11.3 Listing the Message Protocols of an Object : : : : : : : : : : : 50

12 Resetting Objects : 50

13 The Inspector : 51

13.1 The Help Command in the Inspector : : : : : : : : : : : : : : 51

13.2 Listing Information about the Inspected Object : : : : : : : : 52

13.3 Halting the Inspector : 53

13.4 Interruption from the Keyboard : : : : : : : : : : : : : : : : : 54

13.5 Recursive Invocation of the Inspector : : : : : : : : : : : : : : 55

13.6 Listing the Active Objects : 56

13.7 Continuing the Suspended Computation : : : : : : : : : : : : 57

13.8 Getting the Contents of the Program Counters of Objects : : 57

14 Execution Monitoring : 59

14.1 The Tracer : 59

14.2 Recording Event Histories : 61

14.3 Break Points : 62

14.4 Stepwise Execution : 64

15 Other Top Level Forms : 66

16 The Summary of the Top Level Forms : : : : : : : : : : : : : : : : : 67

17 The Summary of the Inspector Commands : : : : : : : : : : : : : : : 69

4 The ABCL/1 User's Guide

PART III 71

18 Syntax of ABCL/1 : 71

19 The ABCL/1 Mode in GNU Emacs : : : : : : : : : : : : : : : : : : : 74

20 Known Bugs and Features : 75

21 Caution!!! : 76

PART I

1 The Computation Model

Objects in ABCL/1 are autonomous information processing agents which work co-

operatively with one another. Each object has its own computing power and works

concurrently (or in parallel) with other objects. The computation model on which

ABCL/1 is based assumes neither shared memory nor global clock. A collection of

objects constitute a distributed computing system.

An object has its own internal world, which consists of a local persistent memory

and procedures inquiring/updating the local memory. They are called state and script,

respectively. Also we assume that an object has its own local clock, namely, the local

time is a well-de�ned concept for the object. The internal world of an object is a

protected structure and cannot be accessed directly from any other object.

Objects interact with one another via message passing. In response to a received

message, an object executes one of the procedures in its script. Execution of a pro-

cedure by an object is a sequence of the following actions:

1. inquiring and updating the state of the object,

2. creating new objects,

3. sending and accepting messages, and

4. returning a value as a reply to a received message.

In ABCL/1, the third kind of actions subsumes the fourth.

For each object, there is a unique message queue and arriving messages are put in

the message queue. We call this event message arrival. Messages in a message queue

will be processed one at a time in a sequential manner. In ABCL/1, message arrival

is asynchronous with the actions 1, 2, 3, and 4 mentioned above. This means that

messages can even arrive at an object in deadlock.

The Computation Model 5

Each object is in one of the three modes, dormant, waiting, and active at any time.

An object is in the dormant mode at its birth time. It becomes active when receiving

a message. During execution of a procedure, it is in the active mode. It enters the

waiting mode when it needs to receive another message in order to proceed with the

execution of the procedure. By receiving an expected message, the object becomes

active again, and continues the computation. After completing the procedure, the

object becomes dormant again.

There are three types of message passing, past, now, and future

1

. Just after trans-

mitting a past type message, the sender object, say O, can continue its computation.

If the receiver object, say O

0

is in the dormant mode, O

0

receives and then processes

the message concurrently with the execution of O. In this case, O does not expect

any reply as a response to the message.

In contrast with the past type message passing, the sender object of a now type

message does not resume its computation until the reply to this message arrives. In

this case, the receiver object may return the reply while processing the message as

well as after completing the actions in response to this message (see in [?] for detail).

The sender object O of a future type message also expects replies. But O does

not have to wait for the replies immediately after the message transmission. O can

continue its current sequence of actions. Each reply will be received asynchronously

with these actions. For the purpose of asynchronous message reception, O creates

a special object called a future object f whose behavior is similar to a queue. O

attaches the name (or destination) of f to a future type message. All the replies to

the message will arrive at f . O can remove and get replies stored in f and also check

whether f is empty or not, whereas any other object O

0

cannot read the contents of

f . What O

0

can do best is sending back a reply to f .

In ABCL/1, a reply is returned as a message. For this convention, each message

which requires a reply contains the information about the place to which the reply

will be sent back. We call this information a reply destination.

Each message is sent in either the ordinary or express mode. A message sent in

the express mode has higher priority than those sent in the ordinary mode. More

precisely, if an object receives a message in the express mode while processing a

message in the ordinary mode, the object suspends the current computation sequence

and starts processing the express message. By default, the suspended computation

will be resumed after completing the actions for the express message.

ABCL/1 satis�es the transmission ordering law:

Suppose that two messages M and M

0

have the same sender O and the

same receiver O

0

; IfM andM

0

are sent in this order according to the local

1

In the rest of this user's guide, we use \past (now, future) type message." This means that the

message is sent as past (now, future) type message passing. It is not implied that each message has

a type.

6 The ABCL/1 User's Guide

clock of O, M and M

0

are always received in the same order according to

the local clock of O

0

.

Note that, in general, if M and M

0

are sent from di�erent objects and received by

the same one, their arrival order cannot be determined.

2 Object De�nitions

In the language ABCL/1, an object whose name is object-name is de�ned in the

following form:

[object object-name

(state [state-variable := initial-value] � � �)

(script

(=> message-pattern @ reply-destination-variable

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description)

.

.

.

(=>> message-pattern @ reply-destination-variable

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description)

.

.

.

)

(routine

(routine-name argument-list

behavior-description)

.

.

.

(routine-name argument-list

behavior-description))]

In the syntax descriptions of this user's guide, a terminal symbol is written in a type

face and a non-terminal symbol in an italic face.

� The state-variables of an object are the variables which represent the internal

persistent state of the object.

� An object de�ned in the above form accepts a message which matches some

message-pattern and satis�es the corresponding constraint . When an ordinary

Object De�nitions 7

(or express) mode message arrives, message patterns and constraints following

=> (or =>>, respectively) are examined in the top-to-bottom order. At that time,

reply-destination-variable and sender-variable are bound to the reply destina-

tion and the sender of the message, respectively. A constraint may contain the

reply-destination-variable and sender-variable.

� After accepting a message, the object performs a sequence of actions described

in the corresponding behavior-description part. While performing these actions,

the object can use the corresponding temporary-variables.

� If some state (or temporary) variable need not be initialized, its declaration

[variable-name := initial-value] can be replaced as variable-name. In such a

case, its initial value will be nil.

� A routine is a local function

2

which can be used only within the object.

� The state and temporary variable declaration parts, the reply destination vari-

ables, sender variables, the constraints attached to the message patterns, and

the routine declaration part are all optional.

The following example de�nes a tiny object which accepts a [:hello] message in

the ordinary mode and returns the value :hi.

[object greeting

(script

(=> [:hello]

!:hi))]

In ABCL/1, according to the keyword convention of Common Lisp, each symbol

whose name begins with a colon (:) is treated as a constant symbol such that its

value is always its name. In the behavior description part of this object, we use

the !-notation, which means that this object returns :hi as a reply to a [:hello]

message.

The above de�nition does not contain any state variable declaration part. Also

the message pattern has no constraint. The object greeting has no internal state

and its behavior is purely functional in the sense that it always behaves in the same

way in response to the same messages.

The next de�nition contains the state variable declaration part.

[object counter

(state [c := 0])

(script

2

This does not mean a mathematical function but a function in the sense of Common Lisp.

8 The ABCL/1 User's Guide

(=> [:increment]

[c := (1+ c)])

(=> [:value]

!c)

(=> [:reset]

[c := 0]))]

The object counter has a single state variable c whose initial value is 0. The state

variable c is considered to represent the contents of the counter. This object accepts

three kinds of messages:

� [:increment] for increasing the contents of the counter by one,

� [:value] for retrieving the contents of the counter, and

� [:reset] for setting the contents of the counter to zero.

The forms [c := (1+ c)] and [c := 0] are assignment forms.

2.1 Message Patterns

A message pattern consists of constant symbols and pattern variables. Any symbol in

a pattern with a leading colon (:) is a constant. Also the numbers and the symbols

t and nil are regarded as constants. Each other symbol in a message pattern is a

pattern variable. A pattern variable matches any value, whereas a constant matches

only itself.

ABCL/1 has a pattern constructor. Suppose that pattern

1

, pattern

2

, � � �, and

pattern

n

are valid message patterns. The following is also a valid message pattern:

[pattern

1

pattern

2

: : : pattern

n

]

This message pattern matches a message

3

:

[message-component

1

message-component

2

� � � message-component

n

]

3

Exactly speaking, a message pattern:

[pattern

1

pattern

2

: : : pattern

n

]

and the value of:

[message-component

1

message-component

2

� � � message-component

n

]

match under the condition mentioned above. This value in turn is equivalent to the value of:

(list message-component

1

message-component

2

� � � message-component

n

)

(see Section 3.5).

Object De�nitions 9

such that the i-th pattern pattern

i

and the i-th message-component

i

match (1 � 8i �

n). For instance, a message pattern [:add n] matches a message [:add 4] and the

pattern variable n is bound to 4 after the match.

The following example is the de�nition of a new counter object. On reception of a

message of length 2 whose �rst component is :add, this object increments its contents

by the value speci�ed as the second component of the message. For instance, if the

object receives a message [:add 2], it will increment its contents by 2.

[object counter

(state [c := 0])

(script

(=> [:add n]

[c := (+ c n)])

(=> [:value]

!c)

(=> [:reset]

[c := 0]))]

In general, a pattern variable is treated as a read only variable in the corresponding

behavior description part.

ABCL/1 supports another pattern constructor. Suppose again that pattern

1

,

pattern

2

, � � �, and pattern

n

are valid message patterns. Then the following is also

a valid message pattern:

[pattern

1

� � � pattern

n�1

. pattern

n

]

This message pattern matches a message:

[message-component

1

� � � message-component

m

]

such that:

1. n� 1 � m,

2. the pattern

i

matches the message-component

i

(1 � 8i � n� 1) and

3. pattern

n

matches [message-component

n

� � � message-component

m

].

For instance, a message pattern [first second . rest] matches a message [:a

:b :c :d] and, after this pattern matching, the pattern variables first, second,

and rest are bound to :a, :b, and [:c :d], respectively.

In order to deal with optional components of messages, the last pattern constructor

of ABCL/1 is introduced. The message pattern:

10 The ABCL/1 User's Guide

[keyword variable

1

� � � variable

n

& variable

n+1

� � � variable

n+n

0

]

where keyword is a symbol with a leading colon (:) and variables are pattern variables

matches a message:

[message-component

0

� � � message-component

m

]

such that:

1. n � m � n+ n

0

,

2. message-component

0

is keyword, and

3. the pattern-variable

i

matches the message-component

i

(1 � 8i � m).

After this pattern matching, pattern-variable

m+1

through pattern-variable

n+n

0

are

bound to nil. For instance, a message pattern [first second & third fourth]

matches a message [:a :b :c] and, through this pattern matching, the pattern

variables first, second, third, and fourth are bound to :a, :b, :c, and nil, re-

spectively.

2.2 Reply Destination Variables

A reply destination variable is a pattern variable which is bound to the reply desti-

nation of an incoming message. A reply to a message M is nothing but a past type

message to the reply destination of M . The following part of the de�nition of the

object counter:

(=> [:value]

!c)

is equivalent to:

(=> [:value] @ reply-to

[reply-to <= c])

where the form [reply-to <= c] means that a message c of past type is sent to the

reply destination reply-to

4

.

4

More precisely, [reply-to <= c] means that a value assigned to c is sent as a past type message

to the reply destination to which reply-to is bound.

Object De�nitions 11

2.3 Sender Variables

The sender of a message can be captured by the following expression:

(=> message-pattern from sender-variable

� � �)

or

(=>> message-pattern from sender-variable

� � �)

When a message is matched against the message-pattern, the sender-variable is bound

to the sender of the message.

2.4 Constraints

The constraint following a message pattern is a Common Lisp form

5

, which is evalu-

ated under the environment including the variable bindings made by the correspond-

ing pattern matching. According to the conventions of Common Lisp, a constraint is

de�ned to be satis�ed if its evaluation value is not nil.

The following object has a message pattern with an attached constraint. With

this, a value by which the object increments its contents must be a positive integer.

[object counter

(state [c := 0])

(script

(=> [:add n] where (and (integerp n) (plusp n))

[c := (+ c n)])

(=> [:value]

!c)

(=> [:reset]

[c := 0]))]

2.5 Behavior Descriptions

A behavior description part consists of several kinds of forms such as:

� assignment forms for updating the value of state/temporary variables,

� object de�nition forms for dynamically creating objects.

� reply forms for returning replies,

5

Constraints should be side-e�ect free.

12 The ABCL/1 User's Guide

� message passing forms for sending messages,

� wait-for(-loop) forms for entering the waiting mode and specifying the accept-

able messages at the mode,

� routine calls for invoking private routines, and

� Common Lisp forms.

Control structures are expressed in terms of Common Lisp forms.

In Sections 3{6, we will describe the syntax and semantics of these forms and

other miscellaneous forms which can occur in behavior description parts.

3 Basic Forms

3.1 Assignment Forms

In ABCL/1, the following assignment form:

[variable := form]

means that the evaluation result of the form is assigned to the variable . Notice that

this form is equivalent to the Common Lisp form:

(setq variable form)

3.2 Object De�nition Forms

An object de�nition form (see Section 2):

[object object-name

(state � � �)

(script � � �)

(routine � � �)]

occurs either in some other form or at the top level of a source program. In the former

case, by each evaluation of this form, an object is created whose behavior is speci�ed

by the form and returned as the evaluation result. In this case, the object-name is a

local name of the newly created object (therefore, any other object cannot refer to

this name) and this part can be omitted.

In the latter case, by evaluation of this form, an object with the global name object-

name is created. The created object can be referred to by any object (including itself)

through its global name object-name.

Basic Forms 13

3.3 Reply Forms

By a reply form,

!form

the evaluation result of the form is sent back as a reply to the currently processed

message.

A value returned by the reply form can be an object.

[object create-stack

(script

(=> [:new]

![object

(state [stack := nil])

(script

(=> [:push x]

[stack := (cons x stack)])

(=> [:pop]

!(car stack)

[stack := (cdr stack)])

(=> [:top]

!(car stack))

(=> [:reset]

[stack := nil]))]))]

When the object create-stack de�ned above receives a [:new] message, it creates

and returns an object whose behavior is described as the [object : : :] form following

an exclamation mark (!).

When the user likes to use several stack objects, it is more convenient to de�ne

the above object than to de�ne a necessary number of stack objects independently of

one another.

3.4 Common Lisp Forms

In order to describe the behavior of an object, not only ABCL/1 constructs, but also

Common Lisp functions, macros, and special forms are used.

3.4.1 Function Calls

A function call is a Common Lisp form whose �rst element is a symbol which names

a function. Upon evaluation of a function call whose �rst element names a function

f , all the remaining elements are evaluated in the left to right order and then f is

14 The ABCL/1 User's Guide

block function macrolet return-from

catch go multiple-value-call setq

compiler-let if multiple-value-prog1 tagbody

declare labels progn the

eval-when let progv throw

et let* quote unwind-protect

Figure 1: The Names of the Common Lisp Special Forms

applied to the evaluation results. ABCL/1 supports all the functions (and thus, all

the data types also) of Common Lisp.

In the following example:

[object printer

(script

(=> any-message

(princ any-message)

(terpri)))]

an object printer is de�ned, which receives any message and prints it using the Com-

mon Lisp functions princ and terpri. Notice that a message pattern any-message,

which is a single pattern variable, matches any message.

The current implementation of ABCL/1 does not support any I/O and arithmetic

functions by itself. In order to describe such actions of an object, we must use

Common Lisp forms.

With the Common Lisp function format, an object with the same behavior can

also be de�ned as follows:

[object printer

(script

(=> any-message

(format t "~A~%" any-message)))]

3.4.2 Special Forms

A special form of Common Lisp is a form whose �rst element is one of the 24 symbols

in Figure 1. Special forms are usually used as control structures (see Section 5.1).

The evaluation strategy of a special form depends on its �rst element.

ABCL/1 currently supports just a subset of the Common Lisp special forms. Each

symbol in Figure 2 can be the �rst element of an ABCL/1 special form.

Basic Forms 15

block if multiple-value-prog1 setq

declare let progn tagbody

function let* quote

go multiple-value-call return-from

Figure 2: The Names of the Special Forms Available in ABCL/1

3.4.3 Macros

Common Lisp implements a macro expansion mechanism. A macro call, a form whose

�rst element is a macro symbol, is expanded into another form and then evaluated.

Most built-in macros of Common Lisp can be used in ABCL/1 programs. However,

some macro forms are expanded into other forms including special forms which are

not supported by the current implementation of ABCL/1. For instance, a with-open-

�le form is possibly expanded into a form including an unwind-protect form, whose

correct execution is not guaranteed by the current implementation.

A macro is de�ned using a defmacro form of Common Lisp. More about macros

is described in Section 5.7.

3.5 Bracket Forms

A bracket form:

[form

1

� � � form

n

]

in a behavior description part is just an abbreviation of the Common Lisp form

6

:

(list form

1

� � � form

n

)

Bracket forms are often used to compose messages from message components. For

instance, the following message passing form:

[stack-object <= [:push 5]]

will send the value of a message [:push 5], which is equivalent to the value of (list

:push 5), to the object stack-object.

ABCL/1 supports another kind of bracket form. The following one:

[form

1

� � � form

n�1

. form

n

]

is an abbreviation of the Common Lisp form:

6

Strictly speaking, the form

1

and form

2

must not be some of the reserved symbols. For instance,

the form

1

must not be the symbol object and the form

2

must not be the symbol :=.

16 The ABCL/1 User's Guide

(cons form

1

(cons � � � (cons form

n�1

form

n

)� � �))

or equivalently

(list* form

1

� � � form

n�1

form

n

)

Therefore, the following portion of the de�nition of a stack object:

(=> [:push x]

[stack := (cons x stack)])

can be replaced as:

(=> [:push x]

[stack := [x . stack]])

4 Message Passing Forms

4.1 Message Passing in the Ordinary Mode

By the following message passing forms, the message of types past, now, and future,

respectively, in the ordinary mode is sent to the object target .

[target <= message] (past)

[target <== message] (now)

[target <= message $ future-object] (future)

In the above forms, each message can be any form and the evaluation result of

the message is the actual message to be transmitted. Each target is a form whose

evaluation result is an object or a tree (i.e., a possibly nested list) of objects. When

the value of the target in a message passing form is a tree of objects, the message is

sent to the objects in parallel. This kind of message passing is called multicast. If the

tree is nil, the message is sent to nothing or, virtually, the null object which receives

any message but does nothing.

The evaluation result of a past or future type message passing form is exactly the

same as the value of a Common Lisp form (values). In this case, the evaluation

terminates just after the message is transmitted.

On the other hand, the evaluation result of a now type message passing form whose

target is a single object is equivalent to the reply

7

which is sent back in response to

the transmitted message. In this case, the evaluation of this form is suspended until

7

In ABCL/1, the receiver of a now type message can send back more than one replies. In such

a case, the returned replies except the �rst one will be discarded by the sender of the now type

message. When an object receives more than one replies to a single now type message, the current

ABCL/1 system prints a warning.

Message Passing Forms 17

the reply arrives. Suppose that fact is an object which receives a message in the form

of [:fact number] and returns the factorial of number as the reply. The evaluation

result of the now type message passing form:

[fact <== [:fact 4]]

is 24.

When the target of a now type message is a tree of objects, its evaluation result is

the tree of the same shape such that each leaf is the reply to the message transmitted

to the corresponding leaf of the target

8

. The evaluation of this form is suspended

until all the replies arrive. The evaluation result of the message passing form:

[[fact [fact]] <== [:fact 4]]

is (the value of) [24 [24]].

In case of future type message passing, the returned replies are put into the future-

object. The details of future type message passing and future objects will be described

in Section 4.3

The following object de�nition contains several past and now type message passing

forms. The object stack-machine-interpreter interprets a message stream which

represents an arithmetic expression in the reverse polish notation. We assume that

the object create-stack creates and returns a stack object in response to a [:new]

message.

[object stack-machine-interpreter

(state [s := [create-stack <== [:new]]])

(script

(=> [:start]

[s <= [:reset]])

(=> [:add]

(temporary

[arg2 := [s <== [:pop]]]

[arg1 := [s <== [:pop]]])

[s <= [:push (+ arg1 arg2)]])

(=> [:difference]

(temporary

[arg2 := [s <== [:pop]]]

[arg1 := [s <== [:pop]]])

[s <= [:push (- arg1 arg2)]])

(=> number where (numberp number)

[s <= [:push number]])

8

If the corresponding leaf of the target tree is nil, no message transmission occurs. In this case,

we consider that \the reply" is nil.

18 The ABCL/1 User's Guide

(=> [:end]

![s <== [:top]]))]

For instance, by receiving the messages:

[:start], 10, 3, 4, [:add], [:difference], and [:end]

the object stack-machine-interpreter returns the value 3, which is the evaluation

result of the arithmetic expression: 10� (3 + 4).

Generally, each temporary variable is initialized every time just before the corre-

sponding behavior description part is executed.

4.2 Past Type Message Passing

Including a Reply Destination

Past type message passing may include a reply destination

9

.

By the following form,

[target <= message @ reply-destination]

the message of the past type with the reply-destination is transmitted to the target .

The reply-destination is a form whose value is either an object or a tree of objects.

By using past type message passing with a reply destination, the following portion:

(=> [:end]

![s <== :top])

in the de�nition of the object stack-machine-interpreter can be improved as fol-

lows:

(=> [:end] @ reply-to

[s <= [:top] @ reply-to])

In the former case, the computation proceeds as follows (Figure 3):

1. some-object sends an [:end] message to stack-machine-interpreter,

2. stack-machine-interpreter sends a now type message [:top] to the stack

object to which the variable s is assigned.

3. the stack object returns its top element to stack-machine-interpreter,

4. stack-machine-interpreter receives the top element, and then

5. returns it to the reply destination of the [:end] message,

Message Passing Forms 19

-

�

6

?

stack

some-object

stack-machine-interpreter

value

[:top]

value[:end]

Figure 3: Prior to Introduction of the Reply Destination Mechanism

-

H

H

H

H

H

H

H

H

H

H

H

HY

?

stack

some-object

stack-machine-interpreter

[:top]

[:end]

value

Figure 4: Posterior to Introduction of the Reply Destination Mechanism

20 The ABCL/1 User's Guide

whereas, in the latter case (Figure 4):

1. some-object sends an [:end] message to stack-machine-interpreter,

2. stack-machine-interpreter sends to the stack object (to which the variable

s is assigned) a past type message [:top] with the reply destination attached

to the [:end] message (i.e., the value of reply-to)

3. the stack object returns its top element to the reply destination of the [:top]

message, which also is the reply destination of the [:end] message.

Obviously, the total number of message passing (including returning replies) in the

latter case is less than that of the former case. Furthermore, in the latter case, just

after sending a [:top] message to the stack object, stack-machine-interpreter

can accept the next message.

4.3 Future Objects

A future object is a special object, which is speci�ed as the reply destination of future

type message passing. Each future object f is created by another object, called the

owner of f , using a make-future form:

(make-future)

or a reset-future form:

(reset-future variable)

By the former form, a future object is created and returned as the evaluation result of

the form. By the latter form, a future object is created and assigned to the variable .

No one except the owner of a future object f has the privilege to specify f as the

reply destination of future type message passing.

ABCL/1 supports the following functions:

� ready?

� next-value

� all-values

to access a future object. Any object except the owner of a future object f cannot

specify f as the �rst argument of these forms. In the following syntax descriptions,

option and options are optional argument(s).

9

In contrast, now or future type message passing always includes a reply destination. Now type

message passing includes an implicit reply destination. In case of future type message passing, the

speci�ed future object is the reply destination.

Message Passing Forms 21

(ready? future-object)

If at least one reply is stored in the future-object, the value of this form is t.

Otherwise, nil.

(next-value future-object option)

The value of this form is the �rst element stored in the future-object . When

the future-object is empty, the owner object waits until a reply arrives. With

the :remove t option

10

, the returned element is removed from the future-object ,

whereas, with the :remove nil option, it still remains even after the evaluation

of this form. The default option is :remove t.

(all-values future-object options)

The value of this form is the list of all the elements currently stored in the

future-object . When the future-object is empty, this form returns nil if the

:wait nil option is given. With the :wait t option, the object waits until

at least one reply arrives. The default option of them is :wait t. With the

:remove t option, all the elements are removed. The options :remove t and

:remove nil have the similar meaning as those of a next-value form.

In the following object de�nitions, future type message passing, make-future

and next-value forms are used. The object merger receives a message including

two objects which are created by the object create-sorted-object and represent

two sorted-lists. In response to this message, merger sends a future type message

[:get-all] to each sorted-list object in order to inquire all of its contents. On

reception of the [:get-all] message, a sorted-list object sends back its elements one

by one in the increasing order to the object merger and also sends back a :finished

following these elements. Then the object merger merges two streams stored in its

future objects and sends back all the elements in the streams one by one in the

increasing order to the reply destination of merger.

Notice that, in the following example, Common Lisp control structures block

11

,

loop

12

, cond

13

, return-from

14

, and dolist

15

are used (see Section 3.4).

[object merger

(script

(=> [:merge sorted-list1 sorted-list2]

(temporary

10

According to Common Lisp conventions, this kind of option should be called keyword parameters.

11

A block special form creates a named lexical block.

12

The loop macro is an in�nite loop construct of Common Lisp.

13

The cond macro is a conditional branch construct of Common Lisp.

14

A return-from special form exits from the speci�ed named lexical block.

15

The dolist macro is a loop construct which traverses a given list and applies its body to each

element of the list.

22 The ABCL/1 User's Guide

[future1 := (make-future)]

[future2 := (make-future)]

elm1 elm2)

[sorted-list1 <= [:get-all] $ future1]

[sorted-list2 <= [:get-all] $ future2]

[elm1 := (next-value future1)]

[elm2 := (next-value future2)]

(block merger-loop

(loop

(cond ((eq elm1 :finished)

(loop

(if (eq elm2 :finished)

(return-from merger-loop))

!elm2

[elm2 := (next-value future2)]))

((eq elm2 :finished)

(loop

(if (eq elm1 :finished)

(return-from merger-loop))

!elm1

[elm1 := (next-value future1)]))

((< elm1 elm2)

!elm1

[elm1 := (next-value future1)])

(t !elm2

[elm2 := (next-value future2)]))))

!:finished))]

[object create-sorted-list

(script

(=> [:new initial-list]

![object

(state [stored-list := initial-list])

(script

(=> [:get-all]

(dolist (elm stored-list) !elm)

!:finished))]))]

Notice that when a sorted list object is created by the object create-sorted-list,

the variable binding of initial-list is copied and then attached to the sorted list

object. This variable is called an environment variable (see Section 7.5) of the sorted

list.

Message Passing Forms 23

Notice in this example that the object merger can possibly send back a partial

result before the sorted-list objects have �nished their tasks.

4.4 Multicast

The next example includes multicast. The object alist-data-base accepts two kinds

of requests. One for registering a key and its associated value and another for specify-

ing a key and retrieving the associated value. This object maintains a list consisting

of objects each of which is created by the create-key-value-pair object and repre-

sents a key-value pair. Upon acceptance of a retrieval request, the alist-data-base

object multicasts the speci�ed key to all the key-value pair objects with the current

reply destination. Each key-value pair object that has the speci�ed key returns its

value.

[object create-key-value-pair

(script

(=> [:new my-key my-value]

![object

(script

(=> [:inquire specified-key]

(if (eq my-key specified-key) !my-value)))]))]

[object alist-data-base

(state [alist := nil])

(script

(=> [:register key value]

(temporary

[key-value-pair :=

[create-key-value-pair <== [:new key value]]])

(push key-value-pair alist))

(=> [:get key] @ reply-to

[alist <= [:inquire key] @ reply-to]))]

A key-value pair object has two environment variables (see Section 7.5) my-key and

my-value.

4.5 Message Passing in the Express Mode

Syntax of message passing forms in the express mode is as follows:

24 The ABCL/1 User's Guide

[target <<= message]

or

[target <<= message @ reply-destination]

(past)

[target <<== message] (now)

[target <<= message $ future-object] (future)

The following clock object receives a [:what-time] message sent in the express

mode.

[object clock

(state [time := 0])

(script

(=> [:start]

(loop

(sleep 1)

[time := (1+ time)]))

(=>> [:what-time]

!time))]

By receiving a [:start] message, the object clock starts to tick. (sleep 1) is a

Common Lisp form which sleeps for one second

16

. In this case, the assignment form:

[time := (1+ time)]

is executed inde�nitely many times. However, if a [:what-time] message in the

express mode arrives during execution of the loop form, the execution is suspended

and then the current value of the state variable time is returned. After that, the

execution of the loop form will be resumed. Notice that, if the message pattern

[:what-time] followed => instead of =>>, a [:what-time] message arriving later

than a [:start] message would never be processed since the actions in response to

the [:start] message will never be terminated.

4.6 Atomic Forms

The following clock object uses two state variables minutes and seconds instead of

a single variable time. After accepting a [:start] message, this object increments

the state variable minutes every 60 seconds.

[object clock

(state

[seconds := 0]

16

In the current implementation of ABCL/1, the function sleep stops not only the object clock

but also the whole ABCL/1 system.

Message Passing Forms 25

[minutes := 0])

(script

(=> [:start]

(loop

(sleep 1)

[seconds := (1+ seconds)]

(if (= seconds 60)

(progn

[seconds := 0]

[minutes := (1+ minutes)]))))

(=>> [:what-time]

![minutes seconds]))]

However, this object is erroneous: it returns an incorrect answer to an express message

[:what-time] if the message arrives at the very time when the object has just set

seconds to 0 and has not yet incremented minutes.

In order to avoid such situations, we can specify a sequence of actions as atomic.

When an express message arrives at an object which is executing an atomic sequence

of actions, the object postpones the express message execution until these actions are

completed.

The next one is a correct de�nition of the clock object.

[object clock

(state

[seconds := 0]

[minutes := 0])

(script

(=> [:start]

(loop

(sleep 1)

(atomic

[seconds := (1+ seconds)]

(if (= seconds 60) then

[seconds := 0]

[minutes := (1+ minutes)]))))

(=>> [:what-time]

![minutes seconds]))]

In general, the following atomic form:

(atomic form � � � form)

speci�es that the sequence of the forms is atomic.

26 The ABCL/1 User's Guide

4.7 Non-Resume Forms

There are often cases where a subsequently arriving express message should abort the

currently processed ordinary message. In order to discard the suspended ordinary

message execution, a non-resume form is available.

In response to a [:start] message, the following object ticks forever. However,

if a [:stop] message in the express mode arrives, its ticking is once suspended and

then aborted by the execution of the (non-resume) form.

[object clock

(state [time := 0])

(script

(=> [:start]

(loop

(sleep 1)

[time := (1+ time)]))

(=>> [:what-time]

!time)

(=>> [:stop]

(non-resume)))]

4.8 Parallel Message Passing Forms

A parallel message passing form:

fmessage-passing-form � � � message-passing-formg

executes all the message-passing-forms in parallel and waits until the replies to all

the now type messages transmitted by the form arrive. The value of this form is the

list of the values of the message-passing-forms.

The next example includes the de�nition of objects which calculate the factorial

of a non-negative integer.

[object fact

(state [range-product := [create-range-product <== [:new]]])

(script

(=> [:fact n] @ reply-to

[range-product <= [:range-from 1 :to n] @ reply-to]))]

[object create-range-product

(script

(=> [:new]

![object

Message Passing Forms 27

(state [children :=

f[create-range-product <== [:new]]

[create-range-product <== [:new]]g])

(script

(=> [:range-from i :to j]

!(if (= i j) i

(let ((mid (truncate (+ i j) 2)))

(apply #'*

f[(first children) <==

[:range-from i :to mid]]

[(second children) <==

[:range-from (1+ mid) :to j]]g

)))))]))]

The object fact receives a non-negative integer n and sends 1 and n, which represent

the range 1 through n, to the range-product object assigned to its state variable.

Each range-product object, which is created by the object create-range-product,

receives a range i through j and sends back the product

Q

j

k=i

k. For this purpose, a

range-product object employs the following strategy: if i = j is satis�ed, just sending

back i; otherwise,

1. dividing the range into two subranges i through b(i+ j)=2c and b(i+ j)=2c+ 1

through j,

2. sending them to the child range-product objects,

3. multiplying the sub-results from its children, and

4. sending back the result.

Notice that the state variables of an object are initialized when the �rst message

arrives at the object (see Section 7.2). Therefore, in this example, the state variable

children in a range-product is initialized in a lazy manner. If this state variable were

initialized when the object is created, an inde�nite number of range-product objects

would be created.

Parallel message passing including now type message passing can be used for a

simple task control. Suppose that there are four tasks A, B, C, and D and that they

must satisfy the following temporal dependency condition among them (Figure 5):

1. Before B and C start, A must terminate.

2. Before D starts, B and C must terminate.

In this case, the de�nition of a task control object can be as follows:

28 The ABCL/1 User's Guide

�

�

�

�

�

�

�	

@

@

@

@

@

@

@R

@

@

@

@

@

@

@R

�

�

�

�

�

�

�	

D

CB

A

Figure 5: A Task Dependency Graph

[object task-controller

(state � � �)

(script

(=> [:start � � �]

.

.

.

� � � [task-A <== [:start]] � � �

� � � f[task-B <== [:start]] [task-C <== [:start]]g � � �

� � � [task-D <== [:start]] � � �

.

.

.

)

.

.

.

)]

In a more complicated situation, we have to explicitly describe the synchronization

condition in terms of future type message passing and ready? and/or next-value

forms.

5 Control Structures

5.1 Common Lisp Control Structures

In ABCL/1, most imperative control structures are described in terms of Common

Lisp macros and special forms. As is mentioned in Section 3.4, we can use most of

them as building blocks of ABCL/1 programs. For instance, in the de�nition of the

merger object in Section 4.3, we use a block special form, loop macros, a cond macro,

Control Structures 29

and return-from special forms. Also we use loop macros to describe the behavior of

the clock objects in Sections 4.5 { 4.7.

The following is another program example in which Common Lisp control struc-

tures do, cond, and if are e�ectively used

17

.

[object tree2leaves

(script

(=> tree

(do ((tree tree))

((null tree) !:finished)

(let ((head (pop tree)))

(cond ((consp head)

(let ((head1 (pop head)))

(if head (push head tree))

(push head1 tree)))

(t !head))))))]

By the following message passing:

[tree2leaves <= tree @ printer]

the object tree2leaves receives a tree represented as a nested list structure and then

sends each leaf (i.e., atomic element) of the tree one by one in the left-to-right order

to printer.

Notice that, when a now type message tree is sent to tree2leaves by the following

message passing form:

[tree2leaves <== tree]

the sender object of this message receives only the �rst reply (see Section 4.1).

5.2 Wait-For Forms

An object which executes a wait-for form:

(wait-for

(=> message-pattern @ reply-destination-variable

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description)

17

Those who are familiar with Lisp may consider that this program is not e�cient since unnecessary

cons cells will be used during execution. We will show an improved version later in Section 5.6.

30 The ABCL/1 User's Guide

.

.

.

(=> message-pattern @ reply-destination-variable

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description))

enters the waiting mode, where the object accepts a message which matches amessage

pattern speci�ed by this form and satis�es the corresponding constraint. After receiv-

ing an acceptable message, the object executes the corresponding behavior-description

part. Note that this acceptable message may have already arrived and been in the

message queue when the object enters the waiting mode.

In the waiting mode, if an arriving message matches no speci�ed message pattern,

the object does not process it and it remains in the message queue. Notice that the

object does not discard this message and will possibly process it later when the object

becomes dormant or enters another waiting mode. (In contrast, when an object is in

the dormant mode, if the �rst arriving message does not match any speci�ed message

pattern, the message will be discarded.)

The following example is a window controller object, which usually accepts write

requests and sends them to the window under the control of this object. However, by

receiving a lock request, the object is locked with a key such that no write request is

processed until the lock is released. In order to release the lock, one who knows the key

must send a release message. We assume the existence of the object create-window

creating and returning a window object, which accepts [:write character]messages.

[object window-controller

(state [window := [create-window <== [:new]]])

(script

(=> [:write character]

[window <= [:write character]])

(=> [:lock-with key]

!:locked

(wait-for

(=> [:release-lock-with k] where (= k key)

!:unlocked))))]

5.3 Wait-For-Loop Forms

A wait-for-loop form is in a similar syntax to a wait-for form:

(wait-for-loop

(=> message-pattern @ reply-destination-variable

Control Structures 31

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description)

.

.

.

(=> message-pattern @ reply-destination-variable

from sender-variable

where constraint

(temporary [temporary-variable := initial-value] � � �)

behavior-description))

The only di�erence from wait-for forms is that a wait-for-loop form is executed re-

peatedly. In order to stop execution of a wait-for-loop form, a return form is available.

The following spooler object implements a spooling mechanism.

[object spooler

(state

[printer :=

[object

(script

(=> any-message

(format t "~A~%" any-message)))]])

(script

(=> [:start-printing] from current-client

(wait-for-loop

(=> [:end] from client

where (eq client current-client)

(return))

(=> [:print message] from client

where (eq client current-client)

[printer <= message]))))]

A print request to this spooler object consists of the following sequence of messages:

[:start-printing], [:print � � �], � � �, [:print � � �], and [:end]

The sender variable current-client is bound to the sender object of a [:start-

-printing] message. During execution of this message, the spooler object enters the

waiting mode where messages from the same sender are exclusively processed. The

execution of the wait-for-loop form is not completed until an [:end] message from

the same sender is accepted.

In this example, (the reference of) the sender object is e�ectively used as an ID

of a spooling request. Two references r1 and r2 point the same object if and only if

(eq r1 r2) returns t.

32 The ABCL/1 User's Guide

5.4 Match Forms

A match form in the following syntax:

(match value-form

(is pattern

1

where constraint

1

form � � �)

.

.

.

(is pattern

n

where constraint

n

form � � �)

(otherwise form � � �))

supports the pattern matching mechanism of ABCL/1. First, the value-form , which

can be an arbitrary form, is evaluated. If the evaluation result matches the pattern

1

and the constraint

1

is satis�ed, the following forms are executed. Otherwise, the

pattern

2

and constraint

2

are examined, and so on. If there is no pattern which matches

the value of the value-form and whose corresponding constraint is satis�ed, the forms

following the otherwise clause are executed. Notice that the constraint parts and the

otherwise clause are optional. Also notice that a pattern which is valid as a message

pattern (see Section 3) is always valid as a pattern in a match form and vice versa.

In the following object de�nition, match forms are used.

[object create-stack

(script

(=> [:new]

![object

(state [stack := nil])

(script

(=> [:push x]

[stack := [x . stack]])

(=> [:pop]

(match stack

(is nil !:empty)

(is [first . rest]

!first

[stack := rest])))

(=> [:top]

(match stack

(is nil !:empty)

(is [first . rest]

!first)))

(=> [:reset]

[stack := nil]))]))]

Control Structures 33

In response to a [:new] message, this create-stack object creates and returns a

stack object. The only di�erence of this create-stack object from the one in Sec-

tion 3.3 is that, when a stack object created by the former is empty, it returns :empty

as a reply to either a [:pop] or a [:top] message.

5.5 Match-Loop Forms

The syntax of a match-loop form is quite similar to a match form:

(match-loop value-form

(is pattern

1

where constraint

1

form � � �)

.

.

.

(is pattern

n

where constraint

n

form � � �)

(otherwise form � � �))

If the otherwise clause is not omitted, a match-loop form is a repeatedly executed

match form. Otherwise (i.e., if the otherwise clause is omitted), a match-loop form is

executed repeatedly until no pair of a pattern and a constraint is satis�ed by the value

of the value-form . In both cases, a return form can stop execution of the match-loop

form.

The following object reverse successively receives a sequence of messages enclosed

by [:start] and [:end] messages. Each message except the �rst one ([:start])

and the last one ([:end]) represents a page image to be printed by a laser beam

printer. In response to this sequence of messages, this object sends the page images

in the reverse order to the object laser-beam-printer.

[object reverse

(state [stack := [create-stack <== [:new]]])

(script

(=> [:start]

[stack <= [:reset]])

(=> [:page image]

[stack <= [:push image]])

(=> [:end]

(match-loop [stack <== [:pop]]

(is :empty

(return))

(is page-image

[laser-beam-printer <= [:page page-image]]))))]

5.6 Routine Calls

A routine call is a form in the following syntax:

34 The ABCL/1 User's Guide

(routine-name argument � � �)

The routine-name is the name of a routine de�ned in the routine declaration part.

The arguments are passed to the routine in a call-by-value manner.

The following object tree2leaves contains routine calls.

[object tree2leaves

(script

(=> tree

(extract tree)

!:finished))

(routine

(extract (tree)

(match tree

(is [[A . B] . C]

(extract [A . B])

(extract C))

(is [A . B]

!A

(extract B)))))]

This de�nition is a revised version of the one in Section 5.1. The routine extract is

de�ned recursively and takes a single argument tree.

Routine calls can be used for the purpose of code sharing. The next one is such

an example:

[object clock

(state

[seconds := 0]

[minutes := 0])

(script

(=> [:start]

(loop

(sleep 1)

(atomic

[seconds := (1+ seconds)]

(if (= seconds 60)

(progn

[seconds := 0]

[minutes := (1+ minutes)])))))

(=>> [:what-time]

![minutes seconds])

Control Structures 35

(=>> [:reset]

(set-time 0 0))

(=>> [:reset-and-stop]

(set-time 0 0)

(non-resume))

(=>> [:set m s]

(set-time m s)))

(routine

(set-time (m s)

[minutes := m]

[seconds := s]

[printer <=

(format nil

"Set the current time to (~D ~D)." m s)]))]

The routine set-time is called just after a [:reset], [:reset-and-stop], or [:set-

-time � � �] message in the express mode arrives. Since this routine is only called

during express message execution, we need not use any atomic form in the body of

set-time.

For the purpose of non-local exit from a routine, a return-from special form:

(return-from routine-name form)

of Common Lisp is available. The return-from form stops execution of the routine

(named by the routine-name) and lets the routine return the evaluation result of the

form . Notice that the form is optional and its default value is nil.

A routine call can explicitly return multiple values using the Common Lisp func-

tion values.

5.7 De�ning Macros

The user can de�ne his or her own macros in ABCL/1. For this purpose, a defmacro

form is available. The following example includes a defmacro form, which de�nes

the macro wait-for-loop-macro equivalent to the ABCL/1 control structure wait-

-for-loop (see Section 5.2).

(defmacro wait-for-loop-macro (&body body)

`(loop (wait-for ,@body)))

In the above example,

(&body body)

36 The ABCL/1 User's Guide

means that the formal parameter body will be bound to the list of all the arguments

of a macro call and:

`(loop (wait-for ,@body)))

is an abbreviation of:

(list 'loop (cons 'wait-for body))

The macro wait-for-loop-macro expands the following macro call:

(wait-for-loop-macro

(=> [:end] from client

where (eq client current-client)

(return))

(=> [:print message] from client

where (eq client current-client)

[printer <= message]))

into the form

18

:

(loop

(wait-for

(=> [:end] from client

where (eq client current-client)

(return))

(=> [:print message] from client

where (eq client current-client)

[printer <= message])))

Note that a macro de�nition must be loaded into the ABCL/1 system before an

object where the macro occurs is loaded. Therefore, defmacro forms should appear

on the head parts of ABCL/1 source �les. Note also that, during expansion of a

macro call, no ABCL/1 speci�c forms (e.g., message passing forms) except match

and match-loop forms can be called. In contrast, the expanded form can include

ABCL/1 speci�c forms.

The next example de�nes the psend macro which simulates a simple case of par-

allel message passing (see Section 4.8). This macro does not assume any multicast as

its argument.

(defmacro psend (&body body)

(let (message-passing-forms

next-value-forms

18

This form is also a macro call since loop is a macro of Common Lisp.

Control Structures 37

make-future-forms

(temp1 (gensym))

(temp2 (gensym)))

(dolist (mess-pass body)

(match mess-pass

(is `[,target <= ,message]

(push mess-pass message-passing-forms)

(push nil next-value-forms))

(is `[,target <= ,message ,at-or-dollar ,reply-to]

where (member at-or-dollar '($ @))

(push mess-pass message-passing-forms)

(push nil next-value-forms))

(is `[,target <== ,message]

(push '(make-future) make-future-forms)

(let ((target (second mess-pass))

(message (fourth mess-pass)))

(push `[,target <= ,message $ (pop ,temp1)]

message-passing-forms))

(push `(next-value (pop ,temp2))

next-value-forms))))

(setq make-future-forms (nreverse make-future-forms))

(setq message-passing-forms (nreverse message-passing-forms))

(setq next-value-forms (nreverse next-value-forms))

`(let* ((,temp1 (list ,@make-future-forms))

(,temp2 ,temp1))

,@message-passing-forms

(list ,@next-value-forms))))

We do not explain the details of this de�nition

19

. We just show an example. The

following macro call:

(psend [O1 <= M1 $ f] [O2 <== M2] [O3 <== M3] [O4 <= M4])

is expanded to the form:

19

However, those who are interested in this de�nition should notice that, under the current im-

plementation, a pattern:

`[,variable

1

,variable

2

� � � ,variable

n

]

matches a form enclosed with brackets:

[form

1

form

2

� � � form

n

]

and after this matching the pattern variable variable

i

is bound to form

i

.

38 The ABCL/1 User's Guide

(let* ((g1734 (list (make-future) (make-future)))

(g1735 g1734))

[O1 <= M1 $ f]

[O2 <= M2 $ (pop g1734)]

[O3 <= M3 $ (pop g1734)]

[O4 <= M4]

(list nil

(next-value (pop g1735))

(next-value (pop g1735))

nil))

where g1734 and g1735 are uninterned (i.e., fresh and unique) symbols created by

the Common Lisp function gensym.

6 Miscellaneous Forms

6.1 Suicide

An ABCL/1 object can kill itself. For this purpose a suicide form is available. After

receiving a [:die] message in the express mode and executing the suicide form, the

following clock object becomes dead and accepts no more messages.

[object clock

(state [time := 0])

(script

(=> [:start]

(loop

(sleep 1)

[time := (1+ time)]))

(=>> [:what-time]

!time)

(=>> [:die]

(suicide)))]

When a message arrives at a dead object, the current ABCL/1 system prints a

warning and invokes the ABCL/1 inspector (see Section 13).

6.2 Break Points

Once some object executes a break-point form:

(break-point) or (break-point string)

Variables and Their Scope Rule 39

the execution of all the active objects are suspended and, if the string argument is

supplied, it is printed. Then the ABCL/1 inspector starts working on the object in

which the break-point form is executed. The detail of the ABCL/1 inspector will be

described in Section 13.

7 Variables and Their Scope Rule

The ABCL/1 employs the lexical scope rule. The variables in ABCL/1 are divided

into the following sorts:

� Variables in the global environment

� State variables

� Temporary variables

� Pattern variables

� Environment variables

� Pseudo variables

Temporary and pattern variables are often collectively called local variables

20

.

Every variable that is not in the global environment belongs to just a single object.

Therefore, when an object is created, its own (or distinct) variables are created for

the object: no such variables are shared by other objects.

7.1 Variables in the Global Environment

Each variable in the global environment must be created and assigned at the top

level, which is the shell of the ABCL/1 system and can be regarded as a special

object (see Section 8.1). At the top level, variables and constants can be declared

using defconstant, defvar, and defparameter forms of Common Lisp. Each object can

refer to a variable in the global environment by its name but no object (except the top

level shell object) can update the contents of any variable in the global environment.

Each object with a global name object-name is the object to which the variable

object-name in the global environment is bound. This variable binding must be

established at the top level. For instance, executing the following form:

20

This does not mean that the temporary and pattern variables of an object are the only locally

de�ned variables within the object. The term \local" is used in the sense that the scope of each

temporary and pattern variable is a local lexical block within an object

40 The ABCL/1 User's Guide

[object A

(state � � �)

(script � � �)]

the top level creates an object satisfying this object de�nition form and binds the

variable A in the global environment to the object. Every object can refer to the

object by its name (i.e., the name A of the variable in the global environment).

7.2 State Variables

A state variable is declared in the state variable declaration part (see Section 2) of

an object de�nition form. Every form executed by an object may inquire/update the

contents of its state variables.

No state variables of an object are initialized at the birth time of the object.

Instead, at the birth time of an object, its state variables are assigned to nil. The

initialization procedure is invoked when the �rst message to the object arrives.

The following example depends on the fact that the initialization procedure of

state variables of an object is invoked when the �rst message arrives at the object.

This example consists of the de�nitions of two objects, which co-operate and generate

prime numbers. The object generator generates an increasing sequence of integers

from 2 as candidates for prime numbers and sends them to a �lter object. Each �lter

object created by the create-filter stores some prime number in its state variable

my-number and �lters out multiples of the prime number.

[object generator

(state

[filter := [create-filter <== [:new]]]

[n := 1])

(script

(=> [:generate]

(loop

[filter <= [:check (incf n)]])))]

[object create-filter

(script

(=> [:new]

![object filter

(state [next-filter := [create-filter <== [:new]]])

(script

(=> [:check n]

(print n)

(wait-for-loop

Variables and Their Scope Rule 41

(=> [:check m]

(unless (zerop (mod m n))

[next-filter <= [:check m]])))))]))]

Notice that, in this example, �lter objects are created in a lazy manner. Otherwise,

no prime number could be obtained and �lter objects would be kept created forever.

7.3 Temporary Variables

A temporary variable is a local variable whose scope is some lexical block of an object.

Temporary variable is declared either in a form:

(temporary [temporary-variable := initial-value] � � �)

or in a let or let* special form of Common Lisp. In the former case, the scope of the

variable is the behavior description part following the temporary variable declaration.

In the latter case, let and let* special forms have the same scope as those in Common

Lisp

21

.

Since ABCL/1 employs the static scope rule, in the following example, the tempo-

rary variable x declared following the message pattern [:start] cannot be accessed

from the behavior description of the routine f. Also, even if an express message

[:interrupt] arrives while an ordinary message [:start] is being executed, the ob-

ject can neither inquire nor update the contents of this temporary variable x during

the execution of the express message.

[object A

(script

(=> [:start]

(temporary [x := nil])

.

.

.

(f)

.

.

.)

(=>> [:interrupt]

.

.

.))

(routine

(f � � �))]

21

However, each temporary variable in ABCL/1 has dynamic extent, whereas, in Common Lisp

each variable declared by a let or let* form has inde�nite extent[?].

42 The ABCL/1 User's Guide

7.4 Pattern Variables

Pattern variables fall into two sorts:

1. elements of message patterns including reply destination variables and sender

variables

2. elements of patterns in match and match-loop forms

In case of 1, the scope of a pattern variable is the constraint, temporary variable

declaration, and behavior description part following the message pattern it belongs

to. In case of 2, the scope of a pattern variable is the forms following the message

pattern it belongs to.

Every time a pattern is being matched against some value, the pattern variables

in the pattern are bound to the corresponding values. These variables cannot be

re-bound within its scope. This fact is one of the most signi�cant di�erences between

pattern variables and state/temporary variables.

7.5 Environment Variables

In the following example, when the object A accepts a [:new � � �] message, an object

satisfying the inner object de�nition form following the exclamation mark (!) is

created.

[object A

(state [x := nil])

(script

(=> [:new y]

![object � � � x � � � y � � �])

.

.

.

)]

In this case, the variable bindings for x and y are copied and then attached to the

environment of the created object. Therefore, this object has its own variables whose

names are x and y, which are called environment variables.

In general, when an object O is created by another one C, the bindings of the

variables of C which can be accessed at that time are copied and then attached to the

environment of O. The variables of O created in this manner are called its environment

variables.

An object can read the contents of its environment variables but it cannot update

the contents.

Variables and Their Scope Rule 43

7.6 Pseudo Variables

Each object has a pseudo variable Me which is always bound to the object itself. Me

is treated as if it were an environment variable, that is, its contents can be read but

cannot be updated by the object.

The following example contains the use of Me.

[object create-clock

(script

(=> [:new]

![object

(state [time := 0])

(script

(=> [:start]

(sleep 1)

[time := (1+ time)]

[Me <= [:start]])

(=>> [:what-time]

!time))]))]

The object create-clock creates a clock object, which sends a past type message to

Me (i.e., to itself) in order to invoke itself again and again.

44 The ABCL/1 User's Guide

PART II

8 The ABCL/1 System

ABCL/1 is not only an object-oriented concurrent language but also an interactive

programming system. Through the following sessions, we will illustrate how to inter-

act with the ABCL/1 system.

The ABCL/1 system is currently running on Sun-3 and Sun-4 workstations and

Symbolics Lisp machines. The ABCL/1 system on Sun workstations is implemented

in KCl (Kyoto Common Lisp) and the one on Symbolics lisp machines is implemented

in Symbolics Common Lisp. Both versions were implemented by Y. Ichisugi. The

following session examples are based on the KCl version of the ABCL/1 system.

The current ABCL/1 system is implemented on a single processor machine and

ABCL/1 programs are executed in a pseudo parallel manner

22

. The ABCL/1 system

maintains a scheduling queue, in which objects in the active mode are stored, and

employs the round-robin style scheduling policy.

8.1 Invocation of the ABCL/1 System

In order to invoke the ABCL/1 system on a Sun workstation, execute the shell com-

mand abcl1.

% abcl1

____ _____ ______ __ ___ TM

NEW / \ | __ \ | | | | // |_ |

| /\ | | |__| | | ---+ | | // | |

| |__| | | __ < | | | | // | |

| __ | | |__| | | ---+ | +---+ // | |

|_| |_| |_____/ |______| |______| // |__|

.

.

.

.

.

.

<ABCL/1> 2

22

We have a prototype version of a multi-computer implementation[?].

The Top Level 45

The top level, which is a shell of the ABCL/1 system, prompts <ABCL/1>. In ABCL/1,

the top level is a special object, which interacts with the user.

In the subsequent session examples, the symbol 2 indicates the current cursor

position.

8.2 Halting the ABCL/1 System

By typing a form (bye) or (by), we can halt the ABCL/1 system and return to the

Unix shell.

<ABCL/1> (bye)

Bye.

% 2 ;; Returning to Unix.

9 The Top Level

9.1 The Help Command

The top level prints the following help message in response to the help command ?.

<ABCL/1> ?

The following commands are available:

(bye) or (by) -- Exit from ABCL/1

(inc "<filename>" ...) -- Include ABCL/1 source or binary � � �

(comp "<filename>" ...) -- Compile ABCL/1 source files

(show-objects) -- List up objects defined at toplevel

.

.

.

<ABCL/1> 2

9.2 Object De�nition at the Top Level

At the top level, the user can de�ne an object by just typing its de�nition form.

<ABCL/1> [object counter

(state [c := 0])

46 The ABCL/1 User's Guide

(script

(=> [:add n] where (and (integerp n) (plusp n))

[c := (+ c n)])

(=> [:value]

!c)

(=> [:reset]

[c := 0]))]

<ABCL/1> 2

An object whose global name is counter is de�ned.

9.3 Evaluation of Forms at the Top Level

The user can obtain the evaluation result of a form by just typing the form at the

top level. For instance, the user can send a message from the top level to the object

counter as follows:

<ABCL/1> [counter <== [:value]]

0 ;; The initial value is 0.

<ABCL/1> [counter <= [:add 3]]

<ABCL/1> [counter <= [:add 2]]

<ABCL/1> [counter <== [:value]]

5 ;; The current value is 5.

<ABCL/1> 2

In response to the �rst [:value] message, the object counter returns the value 0

to the top level. The returned value 0 is printed on the screen. On reception of the

second and third messages, the object counter increments its contents by 3 and 2,

respectively. In these cases, the top level does not receive any reply and, thus, nothing

is printed on the screen. The last message [:value] lets counter return its contents

(i.e., 5) to the top level.

The following is an execution example of a setq form.

The Loader and Compiler 47

<ABCL/1> (setq x [counter <== [:value]])

5

<ABCL/1> x

5

<ABCL/1> 2

By execution of the above setq form, the variable x in the global environment is

dynamically created and the returned value 5 is assigned to this variable. When the

user types the name of a variable, the top level prints the current value of the variable.

The top level can accept more complicated forms.

<ABCL/1> (dolist (message (list [:reset] [:add 3] [:add 2]))

[counter <= message])

nil

<ABCL/1> [counter <== [:value]]

5

<ABCL/1> 2

Each time the top level reads a form, it creates and activates an object, which

evaluates the form and prints the evaluation result. The top level does not prompt

until no active object remains.

10 The Loader and Compiler

10.1 Loading an ABCL/1 Program

It is often the case that the user would like to make a program with his/her favorite

editor and then load it into the ABCL/1 system. For this purpose, an inc form is

available at the top level.

Assume that the user prepares the object de�nition of counter with some editor

and saves it in a �le whose name is counter.abcl1

23

. The e�ects of the following

two scenarios are equivalent.

23

The current ABCL/1 system supposes that the name of every ABCL/1 source �le ends with

\.abcl1".

48 The ABCL/1 User's Guide

<ABCL/1> (inc "counter")

;;

;; Loading the �le counter.abcl1

;;

<ABCL/1> 2

<ABCL/1> [object counter

(state [c := 0])

(script

(=> [:add n] where (and (integerp n) (plusp n))

[c := (+ c n)])

(=> [:value]

!c)

(=> [:reset]

[c := 0]))]

<ABCL/1> 2

In general, inc forms are in the following syntax:

(inc �le-name � � � �le-name)

The speci�ed �les are loaded in the left to right order. When a �le-name ends

with neither .abcl1, .lsp, nor .o, the latest �le among the source code �le �le-

name.abcl1, the intermediate code �le �le-name.lsp, and the compiled code �le

�le-name.o is loaded into the ABCL/1 system.

Note that when an inc form loads an ABCL/1 source �le �le-name.abcl1, it

automatically creates the intermediate code �le �le-name.lisp.

10.2 Compiling an ABCL/1 Program

In order to compile an ABCL/1 source �le (or an intermediate code �le), a comp form

in the following syntax:

(comp �le-name � � � �le-name)

is available. The above form compiles the speci�ed �les. Compiled �les can be loaded

using inc forms.

Getting Information about Objects 49

11 Getting Information about Objects

11.1 Listing the Objects De�ned at the Top Level

A show-objects form prints the list of the objects de�ned at the top level.

<ABCL/1> (show-objects)

*** List of objects defined at toplevel ***

counter ;; counter is the only object currently

;; de�ned at the top level.

<ABCL/1> 2

11.2 Describing Objects

A describe form prints information about the speci�ed object.

<ABCL/1> (describe counter)

ABCL/1 Object #<counter 0> :

Mode: dormant ;; This object is in the dormant mode.

Defined Protocols ;; Ordinary messages beginning with :add, :value,

Ordinary: (:add :value :reset) ;; and :reset are acceptable.

Express: nil ;; No express messages are acceptable.

state c = 5 ;; The value of the state variable c is 5.

<ABCL/1> 2

In Section 1, we say that:

each object is in one of the three modes, dormant, waiting, and active at

any time.

However, in the actual implementation, each object is one of the following six modes:

uninitialized

an object in this mode has never received any message.

dormant

an object in this mode has received at least one message but currently it does

not process any message.

50 The ABCL/1 User's Guide

active

an object in this mode is now processing a message.

wait-for-wait

an object in this mode has entered the waiting mode by executing a wait-for(-

loop) form.

value-wait

an object in this mode has entered the waiting mode by executing a now type

message passing form or a next-value form.

dead

an object in this mode has already executed a suicide form.

The wait-for-wait mode and value-wait mode are often collectively called waiting

modes.

11.3 Listing the Message Protocols of an Object

A protocol form prints the message protocols, the �rst component of each message

pattern, of the speci�ed object.

<ABCL/1> (protocol counter)

Defined Protocols

Ordinary: (:add :value :reset)

Express: nil

<ABCL/1> 2

12 Resetting Objects

A reset form in the following syntax:

(reset object � � � object)

forces the speci�ed objects to enter the dormant mode. At that time, each speci�ed

object either in a waiting mode (wait-for-wait, or value-wait) or in the dead mode

aborts the current computation and the contents of its message queue are discarded.

An object in the uninitialized mode cannot be reset by a reset form.

A full-reset form in the following syntax:

The Inspector 51

(full-reset) or (full-reset object � � � object)

forces the speci�ed objects to enter the uninitialized mode. If this form has no argu-

ment, we consider that all the objects de�ned at the top level are speci�ed. In this

case, each object that is not de�ned at the top level becomes garbage. By this form,

the values of the state variables of each speci�ed object are set to nil and they will

be initialized again when the next message arrives at the object.

13 The Inspector

As is mentioned above, the user can get information about objects using a describe

form at the top level. More information about them can be obtained from the in-

spector, which is invoked by an inspect form. The inspector can also be invoked by a

break-point form (see Section 14.3).

In order to inspect the object counter, do as follows:

<ABCL/1> (inspect counter)

<INSPECTING #<counter 0>> 2

In this example, #<counter 0> is the print-name of the object which is the �rst one

among those whose global or local name is counter. Note that the print-name of the

n+ 1-th object whose global or local name is object-name is #<object-name n>.

The inspector accepts almost all forms available at the top level but no message

transmission is allowed from the inspector. In the inspector, a form is evaluated in

the environment of the inspected object.

<INSPECTING #<counter 0>> c

;; The value of the (state) variable c

5 ;; of the object counter is 5.

13.1 The Help Command in the Inspector

The inspector accepts the help command ? and prints the following help message.

<INSPECTING #<counter 0>> ?

Almost all top-level commands are available.

52 The ABCL/1 User's Guide

Also the following commands are available:

? list up commands

:man <com> help for <com>

:stat status of the object

:where indicate current location of execution counter

:proto acceptable message patterns

.

.

.

.

<INSPECTING #<counter 0>> 2

13.2 Listing Information about the Inspected Object

In the inspector:

� the command :stat prints the current mode and the current values of the

state/environment variables of the inspected object,

� the command :mode prints the current mode of the object,

� the :proto command prints the message protocols of the object,

� the command :l prints the names of the variables in the current environment

24

of the object,

� the command :v prints the current values of the variables in the current envi-

ronment of the object,

� the commands :ls, :le, and :ll print the names of the state, environment,

and local (i.e., temporary and pattern) variables, respectively.

� the commands :vs, :ve, and :vl prints the values of the state, environment,

and local variables, respectively.

In case of the :l command, the name of the object is also listed as a constant.

<INSPECTING #<counter 0>> :stat ;; Printing the current status:

Mode: dormant ;; the current mode is dormant;

24

In general, the inspected object may be in the active mode (see Section 13.4, 14.3) and suspended

by the ABCL/1 system. The current environment of an object depends on the lexical location on

which the execution is suspended.

The Inspector 53

state c = 5 ;; the value of the state variable c is 5;

;; this object has no environment variables.

<INSPECTING #<counter 0>> :proto ;; Listing the message protocols.

Defined Protocols

Ordinary: (:add :value :reset)

Express: nil

<INSPECTING #<counter 0>> :mode ;; Printing the current mode.

Mode: dormant

<INSPECTING #<counter 0>> :l ;; Listing the variable names:

constant counter ;; counter is the only constant;

state c ;; c is the only state variable.

<INSPECTING #<counter 0>> :v ;; Listing the values of the variables:

constant counter = #<counter 0> ;; the value of counter is an object;

state c = 5 ;; the value of the state variable c is 5.

<INSPECTING #<counter 0>> :vs ;; Listing the values of the state variables.

state c = 5

<INSPECTING #<counter 0>> 2

13.3 Halting the Inspector

By the inspector command :q, control returns to the top level.

<INSPECTING #<counter 0>> :q

Reset #<top-level 0> to DORMANT mode.

<ABCL/1> [counter <== [:value]]

5

<ABCL/1> 2

When the inspector is invoked during execution of objects (see Section 13.4, 14.3),

the command :q forces all the active objects to enter the dormant mode. In other

words, the inspector resets (see Section 12) these objects. If the user wants to resume

54 The ABCL/1 User's Guide

the execution, s/he should use the command :c (see Section 13.7) instead of the

command :q.

13.4 Interruption from the Keyboard

During execution of objects, pressing the <return> key suspends the execution of

all the objects and invokes the inspector on the object which is being executed just

when the interruption occurs

25

. This mechanism is useful when objects enter in�nite

computation.

Assume that the following object de�nition forms are stored in the �le whose name

is prime.abcl1.

[object generator

(state

[filter := [create-filter <== [:new]]]

[n := 1])

(script

(=> [:generate]

(loop

[filter <= [:check (incf n)]])))]

[object create-filter

(script

(=> [:new]

![object filter

(state [next-filter := [create-filter <== [:new]]])

(script

(=> [:check n]

(print n)

(wait-for-loop

(=> [:check m]

(if (not (zerop (mod m n)))

[next-filter <= [:check m]])))))]))]

From now on, <return> in session examples means that the user presses the

<return> key.

<ABCL/1> (inc "prime")

;;

25

Since the current ABCL/1 system runs on a single processor system, a single object is being

executed at a time.

The Inspector 55

;; Loading the de�nitions of generator and create-filter.

;;

<ABCL/1> [generator <= [:generate]] ;; Starting Execution.

2

3

5

7

11

13

17

19

23

<return>

Console interrupt

Type ? for help.

<INSPECTING #<filter 1>> 2

13.5 Recursive Invocation of the Inspector

The user sometimes wants to inspect an object which has no global name and to which

some variable of another object is bound. In such a case, the user can recursively

invoke the inspector with the command :ins. The argument of this command is a

form whose evaluated result is the object to be inspected. In a recursive inspection

level, the command :ret exits from the current level and control moves up to the

previous level.

<INSPECTING #<filter 1>> :vs

state next-filter = #<filter 2>

<INSPECTING #<filter 1>> :ins next-filter

;; recursive invocation of the inspector.

<INSPECTING #<filter 2>> :stat

Mode: active

state next-filter = #<filter 3>

env create-filter = #<create-filter 0>

<INSPECTING #<filter 2>> :ins next-filter

56 The ABCL/1 User's Guide

<INSPECTING #<filter 3>> :stat

Mode: wait-for

state next-filter = #<filter 4>

env create-filter = #<create-filter 0>

<INSPECTING #<filter 3>> :ret

;; exiting from the current level.

<INSPECTING #<filter 2>> :ret

<INSPECTING #<filter 1>> :stat

Mode: active

state next-filter = #<filter 2>

env create-filter = #<create-filter 0>

<INSPECTING #<filter 1>> 2

13.6 Listing the Active Objects

A show-system-queue form prints the objects in the active modes and those in the

waiting modes. In the current implementation, the former ones are stored in the

system scheduling queue and the latter ones are stored in the waiting object pool.

<INSPECTING #<filter 1>> (show-system-queue)

*** ACTIVE objects ***

#<filter 0>

#<generator 0>

#<filter 7>

#<filter 6>

#<filter 5>

#<filter 2>

#<filter 1>

*** WAIT-FOR objects ***

#<filter 4>

#<filter 3>

#<filter 8>

*** VALUE-WAIT objects ***

The Inspector 57

nil

<INSPECTING #<filter 1>> 2

13.7 Continuing the Suspended Computation

In order to resume the execution suspended by <return>, the inspector command :c

is available. This command also halts the inspector.

<INSPECTING #<filter 1>> :c ;; Resuming the suspended execution.

29

31

37

41

.

.

.

Typing :q instead of :c in this situation, the suspended computation is terminated

and the top level becomes active. In this case, all the �lters and the generator are

reset and enter the dormant mode.

13.8 Getting the Contents of

the Program Counters of Objects

Each ABCL/1 object has its own program counter, which keeps the position currently

being processed. The inspector can show the contents of the program counter of the

inspected object. For this purpose, the inspector command :where is available. Also,

at the top level and in the inspector, a where form:

(where object)

prints the contents of the program counter of the speci�ed object.

When an object is executing a routine or an express message, the contents of the

program counter in the previous context(s) are pushed on the execution stack of the

object. In this case, a where form and a :where command print not only the current

contents of the program counter but also those of the top �ve and bottom �ve ones

on the stack.

58 The ABCL/1 User's Guide

<INSPECTING #<filter 1>> :where

Mode: active

@("/ua/aoyagi/abcl1/prime.abcl1" 2 2 1 2 3 1 3)

<INSPECTING #<filter 1>> 2

In this example, the �rst element of the list following an @ is the name of the

�le from which the object de�nition of #<filter 1> is loaded. The sequence of the

numbers:

2 2 1 2 3 1 3

following the �le name represents the position at which the current execution is sus-

pended. The �rst 2 means that the position is in the second form in the �le:

"/ua/aoyagi/abcl1/prime.abcl1",

that is, the following object de�nition form:

[object create-filter

(script

(=> [:new]

![object filter

(state [next-filter := [create-filter <== [:new]]])

(script

(=> [:check n]

(print n)

(wait-for-loop

(=> [:check m]

(if (not (zerop (mod m n)))

[next-filter <= [:check m]])))))]))]

The second 2 means that the place is in the third element of the object de�nition

form. In the following, 0 represents the �rst element, 1 represents the second one, 2

represents the third one, and so on.

Execution Monitoring 59

(2 1 2 3 1 3) [

0

z }| {

object

1

z }| {

create-filter

2

z }| {

(script � � �)]

(1 2 3 1 3) (

0

z }| {

script

1

z }| {

(=> � � �))

(2 3 1 3) (

0

z}|{

=>

1

z }| {

[:new]

2

z }| {

![object � � �])

(3 1 3) ![

0

z }| {

object

1

z }| {

filter

2

z }| {

(state � � �)

3

z }| {

(script � � �)]

(1 3) (

0

z }| {

script

1

z }| {

(=> [:check n] � � �))

(3) (

0

z}|{

=>

1

z }| {

[:check n]

2

z }| {

(print n)

3

z }| {

(wait-for-loop � � �))

In the above case, the position is the wait-for-loop form.

Note that in the ABCL/1 mode of Gnu Emacs, it is easy to �nd the position in

the source �le from an output of a where form or a :where command (see Section 19).

14 Execution Monitoring

14.1 The Tracer

During execution, when some event (e.g., message transmission, message acceptance,

or mode transition) occurs on one of the speci�ed objects, the tracer prints the in-

formation about the event. We say that the trace-ag of an object is on when the

object is speci�ed to be traced by the tracer.

In order to turn on the trace ag of objects, a trace-objects form is available whose

syntax is as follows:

(trace-objects object � � � object)

When a trace-objects form takes no argument:

(trace-objects)

the trace ags of all the objects become on.

In order to turn o� the trace ags of objects, an untrace-objects form is available

whose syntax is as follows:

(untrace-objects object � � � object)

When an untrace-objects form takes no argument:

(untrace-objects)

60 The ABCL/1 User's Guide

the trace ags of all the objects become o�.

The value of a trace-objects or untrace-objects form is either the list of the objects

whose ags are on or the symbol :trace-all-objects.

<ABCL/1> (inc "prime")

;;

;; Loading the de�nitions of generator and create-filter.

;;

<ABCL/1> (show-objects) ;; Listing the objects de�ned at the

;; top level.

*** List of objects defined at toplevel ***

create-filter

generator

<ABCL/1> (trace-objects generator) ;; Tracing generator.

(#<generator 0>)

<ABCL/1> [generator <= [:generate]]

fTime 4 g #<generator 0>: ['#<create-filter 0> <== '(:new)]

fTime 4 g #<generator 0> became VALUE-WAIT.

fTime 9 g #<generator 0> received value '#<filter 0> and became � � �

fTime 9 g #<generator 0> accepted '(:generate) from #<top-level 0>

fTime 12 g #<generator 0>: ['#<filter 0> <= '(:check 2)]

<RETURN> ;; Pressing the <return> key.

Console interrupt

Type ? for help.

<INSPECTING #<generator 0>> 2

Every line printed by the tracer is in the following format:

fTime numberg event-description

where number represents the global time of the system when the corresponding event

occurs

26

.

26

In the computation model of the language ABCL/1, no global time is assumed (see Section 1).

However, the current ABCL/1 system maintains the global time for ease of debugging.

Execution Monitoring 61

14.2 Recording Event Histories

An object can record its event history including message transmissions and accep-

tances. A history-on form starts recording the event histories of all the objects and a

history-o� form stops recording them. Later on, a history form (at the top level) or

the inspector command :hist displays the recorded history of the speci�ed object.

<ABCL/1> (full-reset) ;; Initializing the objects.

Reset #<create-filter 0> to UNINITIALIZED mode.

Reset #<generator 0> to UNINITIALIZED mode.

all-abcl-objects was reset.

<ABCL/1> (history-on) ;; Start recording the event histories.

t

<ABCL/1> [generator <= [:generate]]

2

3

5

7

11

<RETURN> ;; Pressing the <return> key.

Console interrupt

Type ? for help.

<INSPECTING #<filter 4>> :hist ;; Printing the history of the �fth �lter.

fTime 49 g #<filter 4> was created by #<create-filter 0>

fTime 68 g #<filter 4>: ['#<create-filter 0> <== '(:new)]

fTime 68 g #<filter 4> became VALUE-WAIT.

fTime 77 g #<filter 4> received value '#<filter 5> and became ACTIVE

fTime 77 g #<filter 4> accepted '(:check 7) from #<filter 3>

fTime 85 g #<filter 4> became WAIT-FOR.

fTime 98 g #<filter 4> accepted '(:check 11) from #<filter 3>

fTime 102g #<filter 4>: ['#<filter 5> <= '(:check 11)]

fTime 113g #<filter 4> became WAIT-FOR.

fTime 122g #<filter 4> accepted '(:check 13) from #<filter 3>

fTime 127g #<filter 4>: ['#<filter 5> <= '(:check 13)]

<INSPECTING #<filter 4>> (history generator :start 5 :end 30)

;; Printing the history between time 5 and time 30 of generator.

fTime 9 g #<generator 0> received value '#<filter 1> and became � � �

62 The ABCL/1 User's Guide

fTime 9 g #<generator 0> accepted '(:generate) from #<top-level 0>

fTime 12 g #<generator 0>: ['#<filter 1> <= '(:check 2)]

fTime 16 g #<generator 0>: ['#<filter 1> <= '(:check 3)]

fTime 21 g #<generator 0>: ['#<filter 1> <= '(:check 4)]

fTime 25 g #<generator 0>: ['#<filter 1> <= '(:check 5)]

nil

<INSPECTING #<filter 4>> (history-off)

;; Stop recording the event histories.

nil

<INSPECTING #<filter 4>> 2

14.3 Break Points

When some object executes a break-point form, the current execution of all the objects

is suspended and the inspector is invoked. For instance, suppose that the object

generator is modi�ed as follows:

[object generator

(state

[filter := [create-filter <== [:new]]]

[n := 1])

(script

(=> [:generate]

(loop

(if (= n 50) (break-point))

[filter <= [:check (incf n)]])))]

The execution of the generator is suspended after transmitting integers up to 50.

The following session example shows the e�ects of a break-point form:

<ABCL/1> [generator <= [:generate]]

2

3

5

7

11

Execution Monitoring 63

13

17

19

23

29

31

Break:

<INSPECTING #<generator 0>> 2

Notice that, in this case, each number in the interval from 32 to 50 is still stored in

some �lter object or has already been �ltered out.

A break-point form may take a string argument. In such a case, the string argu-

ment is printed when a break-point form is executed. For instance, in the following

program:

[object generator

(state

[filter := [create-filter <== [:new]]]

[n := 1])

(script

(=> [:generate]

[alarm-clock <= [:tick 50]]

(loop

[filter <= [:check (incf n)]])))]

[object alarm-clock

(state [time := 1])

(script

(=> [:tick limit]

(do () ((< limit time))

[time := (1+ time)])

(break-point "Suspended in the alarm clock.")

[time := 0]))]

a break-point form with a string argument occurs in the de�nition of the object

alarm-clock. The generator in this program sends a message to the alarm clock

before generating integers. The alarm clock in turn repeats to execute an assignment

form 50 times and then executes the break-point form.

<ABCL/1> [generator <= [:generate]]

64 The ABCL/1 User's Guide

2

3

5

7

11

13

17

Break: Suspended in the alarm clock.

<INSPECTING #<alarm-clock 0>> 2

14.4 Stepwise Execution

In the inspector, the commands :step and :stepme are available for the purpose of

stepwise execution.

The inspector command :step temporarily terminates the inspector and executes

in a single step the active object which is currently at the head of the scheduling queue.

Then this command re-invokes the inspector on this executed object. In contrast,

the inspector command :stepme re-invokes the inspector just after the inspected

object becomes at the head of the scheduling queue again and is executed in a single

step. The command :step supports stepwise execution of the whole ABCL/1 system,

whereas the command :stepme supports stepwise execution of a single object. Note

that other objects may be executed while an object is executed in a single step.

At the top level, a step-objects form in the following syntax:

(step-objects object � � � object)

is available. After evaluation of this form, execution of any one of the speci�ed objects

invokes the inspector on the object. Notice that another step-objects form with no

arguments:

(step-objects)

cancels the e�ects of the previous step-objects form.

<INSPECTING #<alarm-clock 0>> :ins generator

<INSPECTING #<generator 0>> :vs ;; Listing the values of the state

state filter = #<filter 0> ;; variables.

state n = 27 ;; Currently, the value of the state variable n is 27.

<INSPECTING #<generator 0>> :stepme ;; Execution in a single step.

Execution Monitoring 65

<INSPECTING #<generator 0>> :stepme ;; Execution in a single step.

<INSPECTING #<generator 0>> :vs

state filter = #<filter 0>

state n = 28 ;; Now the value of the state variable n becomes 28.

<INSPECTING #<generator 0>> (show-system-queue)

*** ACTIVE objects *** ;; Listing the active and waiting objects.

#<filter 7>

#<filter 6>

#<filter 5>

#<filter 1>

#<filter 0>

#<generator 0>

*** WAIT-FOR objects ***

#<filter 4>

#<filter 3>

#<filter 2>

*** VALUE-WAIT objects ***

nil

<INSPECTING #<generator 0>> (step-objects (find-object 'filter 2))

;; The value of this �nd-object form is the object whose print-name is #<filter 2>

(#<filter 2>) ;; and which is speci�ed as the argument of the step-objects form.

<INSPECTING #<generator 0>> :c ;; Continuing the suspended execution.

19

<INSPECTING #<filter 2>> 2

In the above session example, we use a �nd-object form whose syntax is as follows:

(find-object name number)

The value of the �nd-object form is the object whose print-name is #<name num-

ber>

27

.

27

name can be an uninterned symbol.

66 The ABCL/1 User's Guide

15 Other Top Level Forms

The ABCL/1 system supports the following miscellaneous forms:

(pwd)

This form prints the name of the current working directory.

(cd directory-name)

This form changes the working directory to the directory-name.

(disable-debug)

This form improves the execution e�ciency with sacri�ce of some debugging

mechanisms. For instance, after this form is evaluated, interruptions from the

keyboard are disabled and a show-system-queue form does not print any infor-

mation about the objects in the waiting modes. Just after the ABCL/1 system

is invoked, these debugging facilities are enabled.

(enable-debug)

This form enables the debugging facilities which are disabled by a disable-debug

form.

(improve-room)

This form makes the storage size of the ABCL/1 system larger. The user should

not type this form in the ABCL/1 system running on a machine with small (e.g.,

4M bytes) main memory.

(abcl::gbc-message-on)

After evaluation of this form, the garbage collector works verbosely.

(abcl::gbc-message-off)

After evaluation of this form, the garbage collector works silently.

The Summary of the Top Level Forms 67

16 The Summary of the Top Level Forms

(bye) or (by)

halts the ABCL/1 system.

?

prints the summary of the top level forms.

(inc �lename � � �)

loads the speci�ed ABCL/1 source, internal code, and compiled code �les.

(comp �lename � � �)

compiles the speci�ed ABCL/1 source �les.

(show-objects)

prints all the objects that are created at the top level.

(trace-objects object � � �)

turns on the trace ags of the speci�ed objects and returns the list of the

currently traced objects or the symbol :trace-all-objects. If no arguments

are supplied, it turns on the trace ags of all the objects.

(untrace-objects object � � �)

turns o� the trace ags of the speci�ed objects and returns the list of the

currently traced objects. If no arguments are supplied, it turns o� the trace

ags of all the objects.

(show-system-queue)

prints all the objects in the active and waiting modes.

(reset object � � �)

forces the speci�ed objects to enter the dormant mode.

(full-reset object � � �)

forces the speci�ed objects to enter the uninitialized mode. If no arguments are

supplied, it forces all the objects that are created at the top level to enter the

uninitialized mode.

(history-on)

starts recording the event histories of all the objects.

(history-off)

stops recording the event histories of all the objects.

68 The ABCL/1 User's Guide

(history object &key :start :end) prints the event history of the speci�ed object

in the interval speci�ed by the key word parameters. The default value of the

keyword parameters are 0 and +1.

(inspect object)

invokes the inspector to inspect the speci�ed object.

(describe object)

prints the mode, message protocols, and values of state/environment variables

of the speci�ed object.

(protocol object)

prints the message protocols of the speci�ed object.

(cd directory-name)

changes the working directory to the speci�ed one.

(pwd)

prints the name of the current working directory.

(step-objects object � � �)

makes each of the speci�ed objects invoke the inspector when it is executed in

a single step.

(find-object object-name number)

returns the object whose printing form is #<object-name number>.

(where object)

prints the contents of the program counter of the speci�ed object.

(disable-debug)

improves execution e�ciency with sacri�ce of debugging facilities.

(enable-debug)

cancels the e�ects of a disable-debug form.

(improve-room)

makes the storage size of the ABCL/1 system larger. It is often useful to cope

with frequent garbage collections.

(abcl::gbc-message-on)

lets the garbage collector work verbosely.

(abcl::gbc-message-off)

lets the garbage collector work silently.

The Summary of the Inspector Commands 69

17 The Summary of the Inspector Commands

?

prints the inspector command summary.

:man command-name

prints information about the speci�ed command.

:stat

prints the mode and the values of the state/environment variables of the in-

spected object.

:where

prints the contents of the program counter of the inspected object.

:proto

prints the message protocols of the inspected object.

:mode

prints the current mode of the inspected object.

:v,:vs,:ve,:vl

print the values of all the variables, the state variables, the environment vari-

ables, and the local (i.e., temporary and pattern) variables, respectively, of the

object being inspected.

:l,:ls,:le,:ll

print the names of all the variables, the state variables, the environment vari-

ables, and the local (i.e., temporary and pattern) variables, respectively, of the

object being inspected.

:ins form

evaluates the form under the current environment of the inspected object and

recursively invokes the inspector on the evaluation result. This recursive level

can be exited from by the inspector command :ret.

:hist

prints the event history of the inspected object.

:stepme

performs a stepwise execution of the inspected object. During execution, other

active objects may also be executed. After the execution, the control returns

to the inspector.

70 The ABCL/1 User's Guide

:step

performs a stepwise execution of a single object, which is at the head of the

scheduling queue. After that, the control returns to the inspector, which in-

spects the executed object.

:ret

exits from the current recursive inspection level and moves up to the previous

one.

:c

halts the inspector and resumes the suspended computation (if it exists).

:q

halts the inspector and forces all the active objects to enter the dormant mode.

Syntax of ABCL/1 71

PART III

18 Syntax of ABCL/1

In this section, we describe the syntax of the language ABCL/1 in terms of an ex-

tended BNF notion. We use the following two extended meta constructs:

� ffAgg is equivalent to �jAjAAjAAAj � � �.

� [[A]] means that A is optional.

where � is an empty string and A is some expression in our extended BNF.

<form> ::= <object-de�nition>

| <message-send>

| <!-notation>

| <bracket-notation>

| <parallel-send>

| <wait-for>

| <wait-for-loop>

| <assignment-form>

| <match>

| <match-loop>

| <lisp-form>

<object-de�nition> ::= [object [[<id>]]

[[(state ff <initialize-form> gg)]]

(script ff <script-declaration> gg)

[[(routine ff <routine-de�nition> gg)]]]

<id> ::= <lisp-form>

where (and (symbolp '<id>) (not (constantp '<id>)))

<initialize-form> ::= <id> | [<id> := <form>]

<script-declaration> ::= (<script-arrow> <message-pattern>

[[@ <id>]] [[from <id>]]

[[where <lisp-form>]]

[[(temporary ff <initialize-form> gg)]]

ff <form> gg)

72 The ABCL/1 User's Guide

<script-arrow> ::= => | =>>

<message-pattern> ::= <pattern>

| [<keyword> ff <id> gg

[[& ff <id> gg]] [[. <id>]]]

<keyword> ::= <lisp-form> where (keywordp '<keyword>)

<pattern> ::= <constant>

| <id>

| [ff <pattern> gg]

| [<pattern> ff <pattern> gg . <pattern>]

<constant> ::= <lisp-form> where (constantp '<constant>)

<routine-de�nition> ::= (<id> <lambda-list> ff <form> gg)

<lambda-list> ::= De�ned by [?]

<message-send> ::= <past-send> | <now-send> | <future-send>

| <exp-past-send> | <exp-now-send> | <exp-future-send>

<past-send> ::= [<form> <= <form> [[@ <form>]]]

<now-send> ::= [<from> <== <form>]

<future-send> ::= [<form> <= <form> $ <form>]

<exp-past-send> ::= [<form> <<= <form> [[@ <form>]]]

<exp-now-send> ::= [<from> <<== <form>]

<exp-future-send> ::= [<form> <<= <form> $ <form>]

<!-notaion> ::= !<form>

<bracket-notation> ::= []

| [<bracket-element-1>]

| [<bracket-element-1> <bracket-element-2>

ff <form> gg]

Syntax of ABCL/1 73

| [<form> ff <form> gg . <form>]

<bracket-element-1> ::= <form>

where (not (eq '<bracket-element-1> 'object))

<bracket-element-2> ::= <form>

where (not (member '<bracket-element-2>

'(:= <= <<= <== <<==)))

<parallel-send> ::= f ff <message-send> gg g

<wait-for> ::= (wait-for ff <script-declaration> gg)

<wait-for-loop> ::= (wait-for-loop ff <script-declaration> gg)

<assignment-form> ::= [<id> := <form>]

<match> ::= (match <form>

ff (is <pattern> [[where <form>]] ff <form> gg) gg

[[(otherwise ff <form> gg)]])

<match-loop> ::= (match-loop <form>

ff (is <pattern> [[where <form>]] ff <form> gg) gg

[[(otherwise ff <form> gg)]])

<lisp-form> ::= De�ned by [?]

74 The ABCL/1 User's Guide

19 The ABCL/1 Mode in GNU Emacs

The distribution tape of the ABCL/1 system includes the Emacs Lisp �le abcl1.el,

which contains support tools for development of ABCL/1 programs in GNU Emacs.

In order to use these support tools, �rst move abcl.el to an appropriate directory

which is in the load paths of GNU Emacs and then put the following lines:

--

(global-set-key "\M-A" 'run-abcl1)

(setq auto-mode-alist

(cons '("\\.abcl1$" . abcl1-mode) auto-mode-alist))

(autoload 'abcl1-mode "abcl1")

(autoload 'run-abcl1 "abcl1")

--

in the �le

~

/.emacs of each user.

Currently, abcl1.el includes the following commands:

abcl1-mode

This command changes the major mode of the current bu�er to abcl1-mode.

run-abcl1 (M-A)

This command invokes the ABCL/1 system as an inferior process of GNU

Emacs. Input and output operations are performed via the bu�er *abcl1*.

If the ABCL/1 system has already been running in the bu�er the only e�ect is

that the current bu�er becomes *abcl1*.

abcl1-send-file-and-go (M-X)

This command saves the contents of the current bu�er in the associated �le and

then lets the ABCL/1 system in *abcl1* load the �le. If the ABCL/1 system

has not yet been running, this command invokes the ABCL/1 system, too.

abcl1-documentation (C-H A)

This command interactively asks an argument. If the argument supplied by

the user is a function name, this command prints its document string. If the

argument is an ABCL/1 reserved name such as object, this command prints

the syntax of forms beginning with the name.

abcl1-next-error (M-`)

This command reads an expression:

@(�le-name number number � � �)

Known Bugs and Features 75

printed by a where form or a :where command and searches the location rep-

resented by the expression. Precisely, this command displays the �le �le-name

and puts the cursor at the speci�ed location. If more than one locations are

printed, the cursor goes to each position by repeated invocations of this com-

mand.

20 Known Bugs and Features

1. The current implementation of the ABCL/1 system is running on a single pro-

cessor machine and realizes pseudo parallel execution using a scheduling queue

and a context switching mechanism. However, context switching cannot occur

within the following portions:

(a) lambda expressions

(b) constraints following message patterns

Therefore, the following forms:

(a) message passing forms

(b) tagbody special forms containing tags

(c) block special forms

(d) wait-for and wait-for-loop forms

(e) routine calls

(f) atomic, non-resume, and suicide forms

which may cause context switching can appear neither in lambda expressions

nor constraints.

Notice that loop, do, and do* macro calls of Common Lisp are expanded to

tagbody forms. Thus, in the current implementation of ABCL/1, any lambda

expression cannot include such loop constructs.

2. The current implementation does not allow the user to use return-from and go

special forms for exiting from wait-for(-loop) forms.

3. Let and let* forms cannot bind special variables.

4. The current implementation ignores declare special forms.

5. Though the contents of any environment or pattern variable cannot be updated

according to the language speci�cation (see Section 7), the current implemen-

tation allows an object to update the contents of its environment and pattern

variables.

76 The ABCL/1 User's Guide

6. When a lambda closure created by an object is transmitted to another object,

the system does not assure what will happen.

7. In the inspector, any form which may cause context switching cannot be eval-

uated. Moreover, neither let nor let* special forms can be evaluated in the

inspector.

8. When a source program includes macro calls, where forms and :where commands

may be erroneous.

9. Every object is displayed by the system in the form of:

#<object-name number>

However, under the current implementation, two objects de�ned by di�erent

object de�nition forms with the same object name may share the same printing

form. Therefore, a �nd-object form may not return an expected result.

10. Protocol forms may not print enough information.

21 Caution!!!

The distribution tape of the ABCL/1 system includes a copy of KCl (Kyoto Common

Lisp). Therefore, we cannot distribute the ABCL/1 system to any site without the

KCl license. Those who would like to get the license of KCl should contact:

siglisp%kurims.kurims.kyoto-u.junet%utokyo-relay@relay.cs.net

Thank you.

